
Data and Tape Handling 14-1

Chapter 14: Data and Tape Handling

In this chapter we introduce you to the principal data and tape handling
software and facilities available at Fermilab. These include:

• SAM (Sequential data Access via Meta-data)

• Enstore

• OCS (Operator Communications Software)

Since many groups and experiments have customized their data and tape
handling routines, some or all of the applications described here may not be
available or appropriate for you. Contact your spokesperson or group leader to
find out what procedures have been established for your experiment or group.

14.1 SAM (Sequential data Access via
Meta-data)

SAM (Sequential data Access via Meta-data) is a file-based data management
and data access program that provides an intermediate layer between data
processing and data storage. A single database keeps track of metadata for
every data file associated with a SAM installation. Documentation and
information about SAM as implemented for D0 RunII can be found at
http://d0db.fnal.gov/sam/.

14.2 Enstore

Enstore is the mass storage system implemented at Fermilab as the primary
data store for experiments' large data sets. It provides distributed access to data
on tape or other storage media both local to a user's machine and over
networks. It provides a generic interface so experimenters can efficiently use
mass storage systems as easily as if they were native file systems. SAM or
another data management/access program can be made to interface to Enstore.

14-2 Data and Tape Handling

Enstore is documented at
http://www.fnal.gov/docs/products/enstore/. The Enstore
online monitoring home page is http://hppc.fnal.gov/enstore/.
There are currently (as of February 2003) three productions Enstore systems
running:

• D0EN for the D0 RunII experiment

• CDFEN for the CDF RunII experiment

• STKEN for general users

14.3 OCS (Operator Communications Soft-
ware)

OCS is a package that performs and manages tape drive allocations,
operator-assisted tape mounts and tape drive use statistics. Its
logical-to-physical tape device name translation helps not only human
communication, but hides many platform-specific idiosyncrasies from users.

OCS is not a tape I/O package. It works well with such packages (e.g.,
RBIO, FMB, DAFT).

Start-up information for running and monitoring OCS tape mounts is provided,
and the OCS X interface is introduced.

OCS functions are available via three separate interfaces:

• FORTRAN/C library of subroutines

• Command line tools

• X Motif tools

The features available in each of these interfaces overlap to a great extent.
However, since the different interfaces are by their nature geared towards
different uses, the functionality is not 100% duplicated across them. The
FORTRAN/C subroutines provide the most flexibility and functionality for
users requiring multiple mount requests, the command line tools are generally
used in shell scripts, and the X interfaces are very useful for monitoring tape
drive statistics.

The X interfaces are fairly intuitive, so we give you enough information to
bring them up (section 14.3.2 The OCS X Interfaces), but we do not describe
them in detail.

The OCS functions are fully described in the OCS Reference Guide, document
number GA0012, available on the Web. The reference guide and other
documents are also available wherever OCS is installed and setup, in the
directory $OCS_DIR/doc.

Data and Tape Handling 14-3

14.3.1 OCS Basics

Monitoring Tape Mounts

During the course of your work, you may need to monitor different aspects of
the job and possibly contact the operators. OCS provides functionality to
perform these job management activities. For your convenience, we list the
appropriate command next to the function in the table below, and indicate
whether you can perform the function using one of the X interfaces. You will
need to see the OCS Reference Guide for usage information on these
commands and for the associated FORTRAN/C subroutines.

Function Command X interface

Mark a tape drive broken so that it
will not be allocated until it is
repaired

ocs_broken xocs

Log statistics as to how much the
drive was used

ocs_report
_stat

ocs_init_s
tat

Send an attention message to the
operator

ocs_messag
e

Send a request to the operator to run
a cleaning tape through a tape drive

ocs_clean_
it

Display status of tape drives in the
OCS database

ocs_tape xocs

Display pending mounts ocs_pendin
g

xocs

xtapevi
ew

Display tape drive statistics ocs_devsta
t

ocs_stats

xocs

Display tape mount log ocs_mrlog xocs

Display tape drives that may need to
be cleaned

ocs_clean_
list

xocs

14-4 Data and Tape Handling

Sample Tape Mounting Process

Here is a sample tape mounting process using the command line tools. Read
through it to see what steps are involved and what kind of response to expect
from the system at each step. Note that the OCS commands come with many
options that are not shown here.

First, display the list of available tape drives:

% ocs_tape

HOSTNAME DEVICE TYPE ALLOCATED STATUS VSN
USERNAME UID AUTH

bastet dumdlt4 DLT4000 allocated working -
root 0 n

bastet isis2 EXB-8505 unalloctd working - -
- n

bastet horus EXB-8200 unalloctd working - -
- y

Request allocation of a tape drive so no other user may access it (notice only
one device shows authorization as “yes”):

% ocs_allocate

bastet horus

Send a request to the operations staff to mount a tape on the drive you have
allocated:

% ocs_request -t horus -w -v FGMS04

ocs_request: success

Verify that the tape was mounted correctly:

% ocs_check_label -t horus -w -v FGMS04

ocs_check_label: Success

Set the tape drive characteristics according to your needs (we recommend that
you always do this; don’t assume the drive has been left in any particular state):

% ocs_setdev -t horus

Request the appropriate device file for reading and/or writing the tape
according to the characteristics you’ve set:

% ocs_devfile -t horus

/dev/rmt/tps0d3nrv

Perform your task on the loaded tape. Normally this involves running a
program that calls tape I/O routines from RBIO or another I/O package. For
simplicity in this example, we just use the UNIX dd utility to get the tape
contents (we have loaded an ANSI initialized tape with no data):

% dd if=/dev/rmt/tps0d3nrv conv=unblock cbs=80

Data and Tape Handling 14-5

VOL1FGMS04 ftt
4

HDR1

0+2 records in

0+1 records out

A useful feature to include in this example is the device statistics function. It
provides more detailed information for the end user than the X interface
implementations, which were designed more for administrative purposes.

% ocs_devstat -t horus

--

Collecting Tape Drive Statistic ------------------- Thu Oct
2 12:43:27 1997

--

Host Name = bastet

Device Name = horus

Device Filename = /dev/rmt/tps0d3

Device Type = EXB-8200

Controller = SCSI

Vendor Id = EXABYTE

Product Id = EXB-8200

Firmware Id = 268N

Serial Number = -

Number of Hours On = -1 In Motion = -1

Count/KBytes Read = 2200 Write = -1

Errors Read = 0 Write = -1

Comp Ratio Read = -1 Write = -1

Compresion = NO

Density = 8200

Media Type = 133

Block Size = 0

Block Total = 2294048

Count Origin = Exabyte_Extended_Sense

Remain Tape/KBytes = 2290569

SCSI Sense Code = 0

SCSI ASCQ = 0

Track Retry = -1

Stop/Start Count = -1

SCSI Test Unit Ready = 0

SCSI Sense Key = NO_SENSE

--

Tape Not Present: N | Write Prot: N | Clean Bit: N |
Drive Cleaned: N

14-6 Data and Tape Handling

Beginning of Tape: N | At File Mark: N | End of Media: N |
End of Tape: N

Ready Bit: Y | Power Fail: N | SCSI ILI Bit: N |

--

Dismount the tape (i.e. rewind and unload it):

% ocs_dismount -t horus

ocs_dismount: Success

Finally, deallocate the tape drive so that someone else can use it:

% ocs_deallocate -t horus

ocs_deallocate: Deallocated :horus

Tape Mounts with Batch Jobs

Most of the time, users run tape mounts in conjunction with batch jobs. We
strongly recommend that you include the tape mount allocation, mount
request, dismount and deallocation within your batch job. If you don’t, you
risk preventing others from using the tape drive while your job is waiting to
run and after it has finished. A -q option is provided for the
ocs_allocate command to allow you to queue for tape drive allocation so
that your job won’t fail if a drive isn’t immediately available when it starts to
run.

Here is a sample batch job script that incorporates these recommendations:
 #!/bin/csh

 setup ocs

 set td=`ocs_allocate -q -h localhost -d exabyte_850x
| cut -f2 -d” “ -`

 if ($status != 0) then

 echo ocs_allocate failed with message: $td

 exit 1

 endif

 set drive=`echo $td | cut -f2 -d” “ -`

 ocs_request -t $drive -v fr3147 -r

 if ($status != 0) then

 echo ocs_request failed

 ocs_deallocate -t $drive

 exit 1

 endif

 set dfile=`ocs_devfile -t $drive`

 if ($status != 0) then

 echo ocs_devfile failed with message: $dfile

 ocs_dismount -t $drive

 ocs_deallocate -t $drive

 exit 1

Data and Tape Handling 14-7

 endif

 ocs_setdev -t $drive -v -d 8500

 if ($status != 0) then

 echo ocs_setdev failed

 ocs_dismount -t $drive

 ocs_deallocate -t $drive

 exit 1

 endif

 setenv MY_DEVFILE_VAR $dfile

 e831job.run

 ocs_dismount -t $drive

 ocs_deallocate -t $drive

 exit 0

14.3.2 The OCS X Interfaces

Remember that your DISPLAY environment variable needs to be set properly for
X windows applications (see section 9.6 Some Important Variables).

xocs

xocs is an X interface that you may find useful for viewing tape statistics and
history. It allows you to perform a subset of the functions available through
text commands. After setting up OCS, enter xocs at the command line.
You’ll see the following screen (shown for version v3.0):

14-8 Data and Tape Handling

The menu options under VIEW and ACTION include most of the features you
will need.

xtapeview

Another X interface to OCS which allows you to view pending mount requests
is xtapeview. As a user, you are not permitted to respond to mount requests,
only view them. Invoke this interface with the command xtapeview. A
window will appear from which you can choose a node. Click on the node you
want, then you’ll see a window like the one below which shows the drives
associated with that node, and any pending mounts.

If you have a color screen, the banner at the top is blue when no mounts are
pending, and red if one or more are. The status button (to the left of the drive
name) will be red if a mount is pending on that drive. If you don’t have a color
screen, there are gray-tone representations of blue and red. See
$OCS_DIR/doc/xtape.ps (recall that $OCS_DIR is defined during setup)
for a full description of this application, and to see how to customize the color
scheme.

14.3.3 Using Provided Examples to Get Started

Examples are provided in the $OCS_DIR directory (defined during setup).
You can look at $OCS_DIR/doc/viewgraphs.ps for more
single-command examples and their expected output.

The directory $OCS_DIR/examples provides sample programs for
FORTRAN, C and Bourne shell script which are intended to help you
understand how OCS works. The executables are named ocs_ctest,
ocs_ftest, and ocs_btest for C, FORTRAN and Bourne shell,
respectively. Each program carries almost identical functionality. You may
want to use the source of these programs (ocs_ctest.c, ocs_ftest.fs
and ocs_btest.sh) as an aid in developing your own programs. The
$OCS_DIR/examples/README file explains how to use the examples.

Data and Tape Handling 14-9

These example programs can actually send a mount request to operations
staff: please keep this in mind if you experiment with OCS on Fermilab
Computing Division systems such as FNALU.

14-10 Data and Tape Handling

